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Abstract 
 
The paper deals with finite element analysis of damped modal vibrations Q-factor values determined by thermal-elastic 
damping in micro-electrical-mechanical systems (MEMS). Mathematically the problem is formulated as a complex 
eigenvalue problem. Verification problems have been solved by using several computational environments and different 
presentations of model equations in order to comprehend and reduce the influence of rounding errors. The analysis of 
damped modal properties of selected real MEMS resonator revealed the main features of thermal-elastic damping by 
taking into account 3D geometry of the resonator and anchoring (clamping) structure. 
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1. Introduction 

 
Physical models of vibration damping in structures are 

complex. Mathematical models of traditional machines and 
mechanisms often included correct terms describing 
damping (friction) forces in kinematic pairs and enabled to 
obtain corresponding solutions. Performances of dampers 
could be measured experimentally and thereafter used for 
indicating precisely their mechanical effect upon the 
structure. In practical calculations very often the damping 
forces were evaluated approximately, however, the main 
reason for making simplifications was the desire to obtain 
simpler expressions and easier solved equations. For 
example, if only linear velocity proportional damping is 
assumed, complex eigenvalues λ of the structure can be 
calculated by applying well-known numerical algorithms. 
The imaginary parts of eigenvalues identify the 
eigenfrequencies of the structure, and the ratio of 

imaginary and real parts as Im( )
2*Re( )

Q λ
λ

=  evaluate the 

quality factor (Q-factor, dynamic amplification factor) of 
the vibrating structure. This kind of information in many 
cases can be regarded as sufficient for the characterization 
of main dynamic properties of the structure. The reasoning 
for the selection of damping coefficient value is that the 
computed and experimental results should agree. This 
value should be treated as a certain generalized 
characteristic of a specific structure, which integrally takes 
into account numerous effects and conditions of internal 
and external friction.  

Smaller linear dimensions of new systems and 
structures implicate different constructions and 
compositions. Traditional kinematic pairs and linkages 

between links of the structures are abandoned and the 
functionality ensured by employing controlled deformation 
or vibration of elastic parts. The damping effect takes place 
mostly due to internal friction forces created in the 
material. Correct mathematical description of such 
damping forces is more complex, as in most cases the 
forces cannot be measured directly. In structures with 
linear dimensions of millimeters or centimeters 
approximate linear damping models are often applied. 
Basing on the assumption that the losses in vibrating 
piezoelectric structures is conditioned by mechanical, 
piezoelectric and electric phenomena, linear damping 
terms are used in the dynamic equations. Though the 
nature of real damping forces is quite complicated, 
approximately it is presented by the hysteretic loop of the 
stress-strain relationship. If harmonic vibration is analyzed, 
the hysteretic is approximately described by introducing 
complex-valued stiffness coefficients as 
[ ] [ ]( )1 Mjη= +c c , where Mη  is the mechanical 
dissipation factor. Its physical meaning is the phase angle 
between stresses and strains of the harmonically vibrating 
structure. The complex value of [ ]c

 

implies that the 
calculations are performed in frequency domain, therefore 
the stiffness matrix of the structure is presented in complex 
form as ( )1 Mjη+[K] . Mathematically the same effect 
could be obtained by using the linear damping term 

{ }[C] U  in the finite element structural equation, where 

[ ] [ ]Mη=C K  is the proportional damping matrix, [ ]K - 

stiffness matrix, { }U - nodal displacement vector. The 
general form of the proportional damping matrix reads as 

1 2
e e ea a⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦ ⎣ ⎦C M K , where coefficients 1 2,a a  are 
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easily found by virtue of known values of the Q-factor of 
the structure corresponding to two modal frequencies. 
Very similar consideration could lead to complex values of 
electromechanical and dielectric permittivity coefficients, 
[1]. Such simplified vibration damping models are 
applicable where the damping is not high and where the 
aim of calculation is to investigate the dynamic behavior of 
a structure at given values of its Q-factor.  

Investigating electromechanical systems in micro- and 
nano-electrical-mechanical system (MEMS and NEMS) 
range of dimensions poses even more complex problems of 
adequate evaluation of structural damping. Though usually 
the continuum-based finite element models are applied for 
presenting strains and stresses, the proportional damping 
assumptions appear as too rough and imprecise. The Q-
factors of MEMS often are very high and may reach 

5 910 10− . The new MEMS designs require to predict the 
expected value of Q-factor of the system and to know, 
which particular factors may influence this value. In 
reference [2] a comprehensive analysis of physical 
phenomena influencing the vibration damping in GaAs and 
Si mono-crystal resonators has been performed. The 
influence of temperature, magnetic fields, frequency and 
linear dimensions of MEMS has been investigated 
experimentally. Physical causes of damping can be 
identified as thermal-elasticity, clamping losses, coupled 
anharmonic modes, surface anisotropy and internal defects. 
In the measured cases the friction at the zones of internal 
defects has been recognized as the main reason of 
damping. In [3] experimental investigations of MEMS-
gyro have been directed to the analysis of thermal-elastic 
damping. The electronic circuit damping ( 113.5 10Q ≈ × ), 
thermal-elastic damping ( 4 53.3 10 -  8.29 10Q = × × ) and 
damping caused by other factors ( 52.5 10Q ≈ × ) have been 
distinguished. On the base of the obtained results the 
conclusion could be drawn that for a particular MEMS-
gyro structure thermal-elastic damping appears as a very 
important factor determining the overall Q-factor of the 
vibrations. Clamping losses appeared to have the main 
influence among of the damping sources caused by other 
factors.  

Certain theoretical investigations in the field of 
thermal-elastic damping have been performed as early as 
in ~1930-40, [4]. The formula for obtaining the Q-factor of 
the first bending mode of a clamped beam has been 
derived, [5]. The analytical investigation of the first 
longitudinal mode of an unsupported beam has been 
performed in [6], and analytical results have been 
compared against the finite element modeling results. 
Satisfactory coincidence of results has been obtained under 
an assumption that the temperature values at ends of the 
beam are known and constant.  In reality, the assumption 
of prescribed beam end temperatures lacks a sound 
physical explanation, however, the temperature values at 
this zone may be assumed to vary within a very small 
range due to negligibly small strains at the ends of an 

unsupported beam. Finite element software COMSOL 
Multiphysics has been employed for calculations in [6], 
where the „coefficient“ form of the presentation of 
equations has been chosen.  However, no analysis could be 
found regarding the possible loss of numerical accuracy 
during the solution of the eigenproblem, which may be 
significant as the real parts of the eigenvalues in practical 
cases are up to 5 910 10− times smaller than the imaginary 
ones.  

This work presents the finite element analysis of 
eigenfrequencies and Q factors of sample structures and 
real MEMS structures by taking into account thermal-
elastic effects and the influence of the geometry of the 
clamping zone.  
 
2. Finite element model 
 

MEMS are etched 3D structures, which consist of the 
active Si structure separated from the foundation substrate 
by the SiO2 intermediate layer. The vibrations of active 
elements are excited by means of interaction forces among 
electric charges supplied to appropriate zones of the 
structure. Even in case of linear models of physical 
phenomena, the deformation of MEMS under the action of 
electrical field is described by non-linear equations. During 
deformation processes of active elements the 3D MEMS 
geometry, as well as, electrical field strength are not 
constant.  

The eigenvalue problem of MEMS vibrations at the 
first approximation may be assumed as linear. The 
reasoning for such assumption is that the modal analysis is 
performed without taking into account the excitation 
forces, which are the main cause of the non-linearity of the 
electro-mechanical coupling.  The model presented in this 
work is presented as a system of partial differential 
equations (PDE), which describe the elastic and thermal 
phenomena in the MEMS structure.  

Elastic vibrations of solids are described in volume V 
and its surface S by means of PDE as  

 
[ ] { } { } { } ,A σ b uρ+ = ∈T V         (1) 
 
and boundary conditions as:  

 
{ } [ ] { } ,t A σ= ∈T

s S          (2) 
 

where { }σ  - stress tensor in Foigt’s notation, { }b  - body 

force vector, { }t  - surface force vector, given on surface S, 

{ }u  - displacement vector of any point of the volume, ρ - 

mass density, [ ]A  - differential operator, [ ]sA  - matrix 
containing the components of the external normal vector 
{ }n  of surface S.  In a general 3D case we have
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[ ] [ ]
0 0 0 0 0 0

0 0 0 ; 0 0 0
0 0 00 0 0

A A

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

T

x z y x z y

s y z xy z x

z y xz y x

n n n
n n n

n n n
. 

 
 

The constitutive equation relates stresses, strains and 
temperature as  
{ } [ ] { } [ ]( )( )0σ = c ε κ− −T T                                        (3) 

where { }ε  - strain tensor in Foigt’s notation; [ ]c  - 

stiffness tensor, { } { }0 0 0 Tκ κ κ=κ  - vector of 
thermal expansion coefficients, T - temperature at any 
point of the body, 0T  - reference temperature (i.e., the 
absolute temperature of a body is 0 +T  T ). 

The temperature of the body is not known in advance 
as physical laws of thermodynamics govern them. The 
generation of heat due to elastic strain rate should be 
treated as one of body sources of heat. The heat exchange 
is described by the diffusion PDI as  

 

[ ] [ ]{ }
2 2 2

022 2
, (4)T

x y z T v
T T T b T   c T  V

yx z
κλ λ λ∂ ∂ ∂+ + + − = ∈

∂ ∂∂
c ε

where:  
 
T - temperature [K];  
b - body source of heat; positive if the heat is supplied to 

the body, [W/m3];  
q - heat flux density; positive if the heat is withdrawn from 

the body [W/m2];  
α -  coefficient of heat convection between the body and 

the surrounding [W/(Km2)]; 
λ  -  heat conduction coefficient,  [W/(Km)]; 

v pc cρ= - volumetric heat capacity of the material [J/(m3 
K  )] ; 

pc   -   mass heat capacity of the material [J/(K kg  )]; ρ   - 
density of the material [kg/ m3 ] ;The boundary 
conditions on surface S are presented as  

 

( ) 0,x x y y z z
T T T n T        n n STx y z ααλ λ λ ∞
∂ ∂ ∂

+ + + − = ∈
∂ ∂ ∂

 

 

0, ,x x y y z z q
T T T q        n n n S
x y z

λ λ λ
∂ ∂ ∂

+ + + = ∈
∂ ∂ ∂

 

 
, ,p pT        ST= ∈                                                 (5) 

 
(5) represent three possible types of boundary 

conditions. On surface pS the temperature values are 
prescribed. On surfaces Sα  and qS  the heat flux density 
normal to the surface is defined as 

x x y y z z
T T T- - -n n n
x y z

λ λ λ
∂ ∂ ∂
∂ ∂ ∂

, however, the two 

equations define its value in two different ways. On 
surface Sα the value of heat flux density is proportional to 
the difference of temperatures of the body and of the 
surrounding one. Thermally isolated surfaces are defined 
by assuming 0α = . On surface qS  the heat flux density 
is considered as being prescribed and equal to q , which is 
positive when the heat is withdrawn from the body.  

By applying weighted residual techniques, from PDE 
(1) and (4), boundary conditions (2) and (5) and 
constitutive equation (3) we derive the matrix equation of a 
finite element as: 

 

{ } { }
{ }

{ } { } { } { } { }
0

00 0

00
00 0 0 T

T T T TT TT T ∞

⎡ ⎤⎧ ⎫ ⎧ ⎫⎡ ⎤⎧ ⎫ ⎧ ⎫− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥+ + =⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎡ ⎤ + + + +⎢ ⎥ ⎡ ⎤ ⎡ ⎤+⎡ ⎤ ⎡ ⎤ ⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎣ ⎦ ⎩ ⎭⎣ ⎦

[C] {U} {U}K H {R}+{P} H T[M] {U}
TK P S S Q K TH C C T

               (6) 

 
 
Where [ ] [ ] [ ]T

V

dVρ= ∫M N N , [ ] [ ] [ ][ ]K B c B= ∫ T

V

dV  - 

mass and stiffness matrices;  
[ ][ ][ ] =B A N ; 

[ ]N  and [ ]TN  - form function matrices, which 
interpolate displacements and temperatures within a finite 
element; 

1 2[ ] [ ] [ ]a a= +C M K - proportional damping matrix, 

where 1 2,a a  - coefficients.  

[ ] [ ] [ ]T
T v T T

V
c dV= ∫C N N  - heat capacity matrix of the 

element; [ ] [ ] [ ][ ] [ ] [ ]T T
T T T T T

V V
dV dSα= +∫ ∫K B Λ B N N - 

heat conduction matrix of the element; 

[ ] [ ]( ) [ ]
x

T T Ty

z

grad

∂
∂
∂
∂

∂
∂

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B N N ; 
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[ ] [ ]( )diag λ=Λ  - heat conduction coefficients;  

[ ] [ ] [ ][ ][ ]T
T

V
dVκ= ∫H B c N  - thermal-elastic matrix of 

the element; 
{ } [ ] { }T

V

dV= ∫P N b - nodal force vector determined by 

body forces; 

{ } [ ]TT T T
V

b dV= ∫P N  - nodal power vector, determined 

by prescribed body heat sources; { } [ ]
q

T
T T

S

qdS= −∫S N - 

nodal power vector, determined by prescribed heat flux 

density across the surface; { } [ ]T
T

S

T dS
α

α∞ ∞= ∫S N - nodal 

power vector, determined by thermal exchange with the 
surrounding across the surface;  
{ }Q - vector of prescribed nodal power; 
{ }R - vector of prescribed nodal forces. 

During the investigation of modal vibration the right-
hand side vector in (6) is assumed as zero. Second order 
differential equation system (6) can be transformed to the 
first order differential equation system by performing 
substitution { } { }=V U . The obtained first order differential 
equation system reads as 

 

 

[ ]
[ ]

{ }

{ }

[ ] [ ]
[ ]
[ ] [ ]

{ }

{ }0 0

0 0 0
0 0 0 0 0

00 0 0T
T T TT T

⎡ ⎤⎧ ⎫ ⎡ ⎤⎧ ⎫− ⎧ ⎫⎢ ⎥⎪ ⎪ ⎢ ⎥⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥+ − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎢ ⎥ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎡ ⎤ + ⎩ ⎭⎢ ⎥ ⎢ ⎥⎩ ⎭⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭⎣ ⎦

V[M] [C] K H V
I {U} I {U}

TTC C H K  , (7) 

The eigenvalue problem is formlated as 

 

[ ] [ ]
[ ]
[ ] [ ]

[ ]
[ ]00

0 0
det 0 0 0 0 0

0 00T
T TT TT

λ

⎛ ⎞⎡ ⎤ ⎡ ⎤−⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥− + =
⎜ ⎟⎢ ⎥ ⎢ ⎥

⎡ ⎤⎜ ⎟+⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠

[C] K H [M]
I I

C CH K      . (8) 

 
 

After eigenvalue (8) is solved, the obtained complex 
eigenvalues define the Q-factor of the structure as 

Im( )
2*Re( )

Q λ
λ

=  . 

 
3 Analysis of results 

 
3.1 Investigation of longitudinal vibration modes of a 
beam resonator   

 
Investigation of longitudinal vibration modes of a beam 

resonator has been performed in order to verify the finite 
element model. The natural frequencies obtained by using 
different software and in different spatial dimensions (1D 
and 3D) of the same beam have been compared against 
each other. The material constants of the beam are as 
presented in Table 1, [6]. 

1D model in MATLAB environment has been 
implemented by using equations (6)-(8). In 1D case the 
uniaxial stress is assumed, however, strains are exhibited 
in all 3 spatial directions. In the case of isotropic material 

their values are obtained from equation (3) presented in 
expanded form as (9): 

 
Table 1 

Si material constants 
 

Material constant Value Units 

Young’s modulus, E  1.69e11 Pa 

Mass density,  ρ  2330 kg/(m^3) 

Poison’s coefficient, ϑ  0.3 - 

Thermal expansion 
coefficient, κ  

2.59 e-6 1/K 

Mass specific heat , pc  713 m^2/(K*s^2) 

Thermal conduction 
coefficient, λ   

156 kg*m/(K*s^3) 

Reference temperature, 
initT  

290 K 
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( )
( )
( )

0

0

0

1 0 0 0
1 1

1 0 0 0
1 1

1 0 0 0
1 1(1 )

1 2(1 )(1 2 ) 0 0 0 0 0
2(1 )

1 20 0 0 0 0
2(1 )

1 20 0 0 0 0
2(1 )

x x

y y

z z

xy xy

yz

xz

T T
T T
T TE

ϑ ϑ
ϑ ϑ

ϑ ϑ
σ ε κϑ ϑ
σ ϑ υ ε κ

ϑ υσ ε κϑ
ϑτ υ ϑ γ
ϑτ γ

ϑτ
ϑ

ϑ
ϑ

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥ − −⎧ ⎫ − −
⎢ ⎥⎪ ⎪ − −⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪ − − − −−⎪ ⎪ = ⎢ ⎥⎨ ⎬ −+ − ⎢ ⎥⎪ ⎪

−⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪ −⎢ ⎥⎪ ⎪⎩ ⎭
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

yz

xzγ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (9) 

 
After substituting values 0z yσ σ= =  into (9) we 

obtain ( )( )01y z x T Tε ε ϑε κ ϑ= = − + + − .  

Matrices of linear 2-node element are presented as  

 

[ ] [ ] [ ] [ ] [ ] [ ][ ]

[ ] [ ] [ ][ ][ ] ( )2

1 0 1 1
; ;

0 1 1 12

11 1 1 0
; .

1 1 0 12 (1 2 )

T Tv
T v T T T T T

V V

T
T T

V

c Al Ac dV dV
l

AlEAEdV

λ

κ ϑκκ
ϑ

−⎡ ⎤ ⎡ ⎤
= = = =∫ ∫⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

+− −⎡ ⎤ ⎡ ⎤⎡ ⎤= = =∫ ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎣ ⎦ ⎣ ⎦

C N N K B Λ B

H B c N C

  (10) 

 
After structural matrices are assembled, eigenvalue 

problem (8) is solved by using the MATLAB function 
eig. The results regarding the 1st longitudinal mode are 
presented in Table 2, 6th column. It appears important to 
mention the danger of possible loss of arithmetic accuracy 
of the solution. In case of linear measures corresponding to 
MEMS, numerical values residing in matrices of equation 
(8) may be of a very different magnitude. As a 
consequence, the eigenproblem solution process may 
diverge, or its accuracy may be lost. This regards mainly 
the real parts of eigenvalues, which may be up to 

5 910 10− times smaller than the imaginary ones. Proper 
scaling should be applied in order to avoid or diminish the 
above-mentioned effect. As one of the possible ways of 
scaling a proper change of units system may be applied. 

Instead of basic units of SI as [ ], , ,m kg s K  we used 
the unit system 

7 6, , 10 , 10m kg s K
number of elements

−⎡ ⎤
⎢ ⎥
⎣ ⎦

.  

1D model in COMSOL Script environment is 
presented in a “general” form  

 

a

v
d u F

T

⎧ ⎫
⎪ ⎪+∇⋅Γ =⎨ ⎬
⎪ ⎪
⎩ ⎭

   , which in 1D case reads as 

  

( )2
00

0
0 1 0

0 0 0 ;
2 1

0 0
1 2v

v v
uu c c T V

x x
T T c vT c

TC
x

ρ κ
κκ ϑ

λϑ

⎧ ⎫
⎡ ⎤ ⎪ ⎪
⎢ ⎥ ⎪ ⎪⎧ ⎫ ⎧ ⎫⎢ ⎥ ⎪ ⎪∂ ∂⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤− − = ∈⎢ ⎥ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ ⎩ ⎭ ⎩ ⎭⎢ ⎥ ⎪ ⎪∂+ ⎡ ⎤⎢ ⎥ ⎪ ⎪−⎣ ⎦ ⎢ ⎥∂⎣ ⎦⎩ ⎭

   ,             (11) 

where                   
( )2

00

0
0 1 0

0 0 ; ; 0 .
2 1

0 0
1 2

a

v

v
ud c c T F
x

T c vT c
TC
x

ρ κ
κκ ϑ

λϑ

⎧ ⎫
⎡ ⎤ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎧ ⎫⎢ ⎥ ⎪ ⎪∂ ⎪ ⎪⎡ ⎤= Γ = − − =⎢ ⎥ ⎨ ⎬ ⎨ ⎬⎢ ⎥∂⎣ ⎦⎢ ⎥ ⎪ ⎪ ⎪ ⎪+ ⎩ ⎭⎢ ⎥ ⎪ ⎪∂+ ⎡ ⎤⎢ ⎥ ⎪ ⎪−⎣ ⎦ ⎢ ⎥∂⎣ ⎦⎩ ⎭
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Boundary conditions are presented as  

 

;

0

n μ
⎧ ∂⎛ ⎞− ⋅Γ = + ∈⎪ ⎜ ⎟∂⎨ ⎝ ⎠
⎪ = ∈⎩

TRG S
u

R S
   (12) 

where 

0

0 0
0 , 0
0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
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The later boundary condition means that temperatures 
of certain points of a structure are known in advance 
(Dirichlet boundary condition). If the beam is thermally 
insulated the boundary conditions G and R are both zeros, 
i.e. the natural boundary conditions are valid by default.  

As all equations are linear, the COMSOL “coefficient” 
form is applicable as  
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The results regarding the 1st longitudinal mode are 

presented in Table 2, 5th column. 
3D model in COMSOL Multiphysics environment has 

been created by using the GUI as a coupled two-field 
Multiphysics problem. Two application modes have been 
coupled: 

• MEMS Module-> Structural Mechanics->Plane 
Stress->Damped eigenfrequency analysis; 

• COMSOL Multiphysics->Heat Transfer -
>Conduction->Transient analysis. 

Thermal-mechanical coupling is ensured by entering 
the body heat source, which described the generation of 
the heat in the volume at given strain rates as 

0

1 2
T c u v w

x y z
κ
ϑ
⎛ ⎞∂ ∂ ∂

− + +⎜ ⎟− ∂ ∂ ∂⎝ ⎠
 and the expansion of the solid 

due to temperature variation 0T T− . The results 
regarding the 1st longitudinal mode are presented in 
Table 2, 5th column  

Analysis of the results of Table 2 demonstrates that 
TED phenomena cause only very slight increase 
(~0.01%) of the modal frequency compared with the 
modal frequency obtained without considering TED, 2nd 
and 3rd columns of Table 2. However, the most important 
result of the calculation is the obtained Q-factor value 
(note that without considering TED the theoretical value 
of the Q-factor should be infinite as no internal friction 
effects are considered in the model). For verification 
purposes Table 2 presents the Q-factor values obtained 
for 1D and 3D models.  

4 column of Table 2 presents the results obtained in 
[6], and 5th and 6th columns display the results obtained 
in this work by using the MATLAB and COMSOL Script 
models described above. It is worth to mention that 
columns 4-6 present the results of analysis of 
mathematically identical (!) models, however, slightly 

different results (up to 1-2%) can be observed. It seems 
reasonable to assume that different numerical values are 
caused by rounding errors, which are caused by specific 
values of coefficients of PDEs. Though the accuracy of 
calculations is satisfactory for engineering purposes, the 
calculations should be performed very carefully and 
additional effort should be devoted in order to persuade that 
the solution is within acceptable accuracy limits. Proper 
selection of physical unit system, as well as, scaling of 
variables may facilitate to obtain good solutions. Comparing 
the solutions obtained by using different scaling coefficients 
against each other also facilitate the understanding if the 
rounding errors do not influence the solution significantly. 
Results also may appear as slightly different, depending on 
eigenvalue problem solution algorithm used.  

Increased attention should be also devoted to the 
investigation of convergence of the solution. It is well 
known that in the solution of purely mechanical modal 
analysis problem only few elements are enough for 
obtaining the first mode of a structure. Even a single 
element is able to approximate reasonably the first modal 
frequency. If thermal-elastic damping is taken into account 
the number of elements should be much greater. For 
example, a single element is completely unable to represent 
the effect of TED, as its first eigenvalue is obtained as 
entirely complex (i.e. it does not describe the damping 
effect). The solutions in examples above have been obtained 
by using 70 first order or 35 second order elements along the 
length of the beam.  

Fig.1 presents the eigenform of distribution of amplitude 
values of temperature along the beam during its 1st mode 
longitudinal vibration. The temperature values should be 
interpreted as relative ones rather than defined in Kelvin as 
they are determined by modal forms, which are 
dimensionless. Therefore relative values of temperature are 
presented by the contour plot over a domain. They change 
harmonically all the time as the resonator vibrates. The TED 
effect on modal vibrations depends on the reference 
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temperature 0T , i.e. on temperature of the structure before 
the experiment. The value of the modal frequency 
increases only very slightly with the increase of 

temperature, however, the Q-factor value is much more 
sensitive to the reference temperature variation, Fig. 2.

Table 2 
Modal frequencies and Q-factors of 1st longitudinal mode of unsupported MEMS beams. Thermal-elastic damping 

(TED) taken into account at the condition of full thermal insulation 
 

1st modal frequency (Hz) Q-factor Length 
(µm) Without  TED  With  TED Ref. [6] 1D, COMSOL 

Script, 35 II 
order elements 

1D model, MATLAB,  
70  I order elements 

3D model, 
COMSOL 

Multiphysics 

0.5 8.51587e+009 8.51667e+009 1.0004e+005 1.002715e+005 1.0065e+005 1.005578e5 

5 8.51587e+008 8.51671e+008 7.8963e+005 7.91674e+005 7.98966e+005 7.938552e5 

50 8.51587e+007 8.51671e+007 7.4744e+006 7.48993e+006 7.66816e+006 7.513373e6 

500 8.51587e+006 8.51671e+006 7.3515e+007 7.32553e+007 7.64718e+007 7.375455e7 

1000 4.25793e+006 4.25835e+006 1.4670e+008 1.46297e+008 1.52940e+008 1.470492e8 

 

 
Fig. 1. Distribution of amplitude values of temperature along an unsupported beam resonator at 1st longitudinal mode 

 

 
Fig. 2. Dependance of the Q-factor of the first longitudinal mode 

of an unsupported beam  resonator against the reference 
temperature 

 
3. 2 Investigation of bending vibration modes of a beam 

resonator  
 

A 3D computational model of bending vibrations of a 
beam resonator in COMSOL Multiphysics environment is 
very similar to the one used in section 3.1 for longitudinal 
vibration analysis. The only difference is that the bending 
vibration model employs a single symmetry plane xOz 
along the beam, while two symmetry planes xOz and xOy 
have been used for longitudinal vibration investigation. 
The finite element mesh and 1 and 3 modal vibration forms 
are presented in Fig.3, where contours depict the 
temperature distribution over the beam caused by the 
thermal-elastic coupling. The beam is assumed to be 
completely thermally isolated.  
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                                                                                           (a) 
 

 
                                                                                         (b) 

 

 
                                                                                      (c) 
 

Fig. 3. Distribution of amplitude values of temperature at modal bending vibration of an unsupported beam resonator; length of the 
beam L=50 µm, cross-section height h=1.2 µm; 

  a) finite element mesh, symmetrical model; b) 1st mode,  f = 4194244 Hz; Q = 125715.6;   
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Fig. 4 depicts the 1st modal form of the same beam 
resonator clamped at both ends. The temperatures at the 
ends of the beam are assumed as known and equal to 
reference temperature 0T . The assumption is based on the 

fact that the clamped ends of the beam comprise a 
monolithic body with other parts and the base (substrate) 
of the body of MEMS chip. 

 

 
 

Fig. 4. Distribution of amplitude values of temperature at modal bending vibration of a beam resonator ideally clamped at the ends;   
           f = 4219332 Hz;  Q = 130337   

 
The influence of thermal boundary conditions and of 

the reference temperature on the Q-factor of the 1st bending 
mode may be analyzed, Table 3. If the temperatures at the 
ends of the beam are considered as given, the Q-factor of 

the bending mode is always calculated as larger than it 
would be for fully thermally isolated beam. The effect of 
thermal isolation of the beam was quite opposite when 
longitudinal vibrations were considered, [6].  

Table 3 
1st modal frequency and Q factor of a beam clamped at its ends at different reference temperature values 

 

 Ends of the beam thermally isolated  Temperature of ends of the beam equal to reference 
temperature  

T0 (K) f (Hz) Q f (Hz) Q 

100 4219332 320665 4219332 377978 

200 4219332 160332 4219332 188989 

290 4219332 110574 4219332 130337 

400 4219332 80167 4219332 94495 

 
 

3.3 Investigation of bending modes of resonators 
structures in 3D  

 
A layout of a sample resonator depicted in Fig. 5a 

presents an etched 3D structure, which consists of the 
active Si structure including the beam-type resonator and 
anchor, which is separated from the foundation substrate 
by the SiO2 intermediate layer. The anchors are resting on 
the intermediate layer meanwhile the intermediate layer 
material under the beam part of the resonator is removed. 

The resonator is able to perform in-plane and out-of-plane 
bending vibrations. The finite element models 
corresponding to positive and negative clamping 
(anchoring) angles are depicted in Fig. 5 b, c. The models 
present only active layer and intermediate layer the bottom 
surface of which was approximately assumed to be 
supported fixedly. Symmetric out of plane modes can be 
calculated by using a quarter symmetry model as in Fig. 6 
b, c and symmetric in-plane modes can be presented by 
using a symmetrical model as in Fig.7. The values of 
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material constants of SiO2 used in our calculations are 
presented in Table 4 

 
Table 4 

SiO2 material constants 
 

Material constant Value Units 

Young’s modulus, E  0.73e11 Pa 

Mass density, ρ  2200 kg/(m^3) 

Poison’s coefficient, ϑ  0.17 - 

Thermal expansion coefficient, 
κ  

0.55e-6 1/K 

Mass specific heat , pc  1000 m^2/(K*s^
2) 

Thermal conduction 
coefficient, λ   

1.4 kg*m/(K*s
^3) 

Reference temperature, initT  290 K 

 
The results obtained in case of ideally clamped beam 

(columns 6-7 of Table 5) produce a ~10% error both in 
modal frequency and the Q-factor. Therefore the ideally 
clamped beam model can be applied only for very rough 
estimations of the dynamic behavior of real resonators. The 
analysis results substantiate the necessity to employ 3D 
models, which represent full geometry of anchors and the 

intermediate layer. However, clamping geometry can be 
expected to be neither the reason nor the explanation of 
“clamping losses” mentioned elsewhere in the literature as 
the Q-factors of models containing the full clamping 
geometry produce Q-factor values even higher than those 
of ideally clamped beam model. Probably, the internal 
friction properties of SiO2 material should be investigated 
in order to provide the theoretical background for the 
clamping losses effect. The influence of reference 
temperature on the Q-factor value may be analyzed from 
Table 5, where the increase of reference temperature 
causes the rapid decrease of the Q-factor value. 

Numerical results of the 1st out-of-plane bending 
vibration mode in Table 6 present the values of modal 
frequency and Q-factors at two different clamping angles 
+30o , 30o− and in case of ideally clamped ends of the 
resonator, the distribution of amplitude values of 
temperature over the structure corresponding to the 1st 
mode being presented in Fig.7. The dependence of the Q-
factor values on the reference temperature exhibits the 
same tendency as it was in the case of out-of-plane 
vibrations. The necessity of using 3D models presenting 
full 3D clamping geometry is obvious because of large 
difference in modal frequencies presented in columns 2 
and 4 against column 6.  

 

Table 5 
 

Frequencies and Q-factors of the 1st out-of-plane bending mode of MEMS resonator at different values of the 
reference(surrounding) temperature and different anchoring conditions 

 

 Clamping angle +30o Clamping angle -30o Ideal console clamping 

T0 (K) f (Hz) Q f (Hz) Q f (Hz) Q 

100 7547432 122478 7731439 115290 8256405 108662 

200 7547437 61240 7731475 57646 8256409 54331 

290 7547443 42236 7731481 39756 8256413 37470 

400 7547449 30621 7731488 28824 8256419 27166 

 
 

Table 6 
 

Frequencies and Q-factors of the 1st in-plane bending mode of MEMS resonator at different values of the 
reference(surrounding) temperature and different anchoring conditions 

 

 Clamping angle +30o Clamping angle -30o Ideal console clamping 

T0 (K) f (Hz) Q f (Hz) Q f (Hz) Q 

100 22 049 920 61950 22 459 710 58778 25 074 130 59512 

200 22 050 500 31000 22 460 290 29412 25 074 800 29780 

290 22 051 020 21395 22 460 810 20298 25 075 400 20553 

400 22 051 650 15525 22 461 450 14729 25 076 130 14914 
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                                                                                a 
 

 
 
                                                                                b 
 

 
c 

Fig. 5.  Principal scheme of MEMS structure(a) and quarter-symmetry models for calculating the „out of plane“ bending modes at 
positive (b)and negative  (c) values of the clamping angle; length of the beam  L, cross-section height h, width of the beam b, 
height(thickness) of SiO2 layer  H 
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Fig. 6. Distribution of amplitude values of temperature at 1st out-of-plane bending mode vibration of a beam clamped at its ends; length 

of the beam L = 40 µm, height of the cross-section h=1.5 µm, width of the beam b = 5 µm, height (thickness ) of SiO2 layer        
H = 2.5 µm, clamping angle +30o; quarter-symmetry model, f = 7547443 Hz; Q = 42236   

 
 

 
 
Fig. 7. Distribution of amplitude values of temperature at 1st in-plane bending mode vibration of a beam clamped at its ends; length of 

the beam L = 40 µm, height of the cross-section h = 1.5 µm, width of the beam b = 5 µm, height (thickness) of SiO2 layer            
H = 2.5 µm, clamping angle  -30o; symmetric model,  f = 22 460 810 Hz; Q = 20298 
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4. Conclusions  
 

The Q-factor determined by thermal-elastic damping of 
micro-electro-mechanical resonators structures is a very 
important dynamic characteristic since it provides the 
upper limit of the Q-factor that is possible to achieve in a 
structure of given geometry and materials under an 
assumption that no internal friction and other sources of 
damping are present.  

A  FEM computational model of longitudinal and 
bending vibrations of a beam resonator has been developed 
in order to analyze the eigenfrequencies and Q factors of 
test vehicle as well as real MEMS structures. Model 
verification has been performed by calculating modal 
properties of unsupported beam structures and comparing 
against published results.  

The analysis of the micro-electro-mechanical resonator 
revealed the main features of thermal-elastic damping by 
taking into account 3D geometry of the resonator and the 
anchoring (clamping) structure. The clamping angles and 
reference temperature have a significant influence on 
modal frequencies and Q-factors of the resonator. 
However, the calculations performed could not explain the 
clamping losses effect mentioned in the reference literature 
and suggests further investigations in this direction where 
the internal damping in silicon dioxide intermediate layer 
of the MEMS chip should be investigated in more details 
by setting-up properly planned physical and numerical 
experiments.  

The project is financially supported by NATO RTO 
and Lithuanian State Science and Studies Foundation. 
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